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Abstract A novel method, entitled the discrete global descent method, is developed
in this paper to solve discrete global optimization problems and nonlinear integer pro-
gramming problems. This method moves from one discrete minimizer of the objective
function f to another better one at each iteration with the help of an auxiliary func-
tion, entitled the discrete global descent function. The discrete global descent function
guarantees that its discrete minimizers coincide with the better discrete minimizers of
f under some standard assumptions. This property also ensures that a better discrete
minimizer of f can be found by some classical local search methods. Numerical exper-
iments on several test problems with up to 100 integer variables and up to 1.38×10104

feasible points have demonstrated the applicability and efficiency of the proposed
method.

Keywords Discrete global descent method · Discrete global optimization ·
Nonlinear integer programming · Integer programming

1 Introduction

We consider in this paper the following discrete global optimization problem (nonlin-
ear integer programming problem):

(P) min{ f (x) : x ∈ X }
with the following assumptions:

C.-K. Ng · D. Li (B)
Department of Systems Engineering and Engineering Management, The Chinese University of
Hong Kong, Shatin, N.T., Hong Kong S.A.R., P.R.China.
e-mail: dli@se.cuhk.edu.hk

L.-S. Zhang
Department of Mathematics, Shanghai University, Baoshan, Shanghai 200436, P.R.China.



358 J Glob Optim (2007) 37:357–379

Assumption 1 X ⊂ ZZn is a finite integer set with at least two integer points, where
ZZn is the set of integer points in IRn.

Assumption 1 implies that there exists a constant K such that

1 ≤ max
x(1),x(2)∈X

‖x(1) − x(2)‖ ≤ K < ∞, (1)

where ‖ · ‖ is the usual Euclidean norm.

Assumption 2 X is a pathwise connected set (see Definition 1).

Assumption 3 f : X �→ IR satisfies the following Lipschitz condition for every x(1),
x(2) ∈ X:

|f (x(1)) − f (x(2))| ≤ L ‖x(1) − x(2)‖, (2)

where 0 < L < ∞ is the Lipschitz constant.

Notice that the formulation in (P) allows the set X to be defined by box constraints
as well as by inequality constraints. Furthermore, when f is coercive, i.e., f (x) → ∞ as
‖x‖ → ∞, there always exists a box which contains all discrete global minimizers of
f . Thus, the unconstrained discrete global optimization problem, min{ f (x) : x ∈ ZZn }
can be reduced into an equivalent problem formulation in (P). In other words, both
unconstrained and constrained discrete global optimization problems can be consid-
ered in (P).

Discrete global optimization arises frequently in various applications such as com-
binatorics, computational finance, scheduling, design and operations problems. While
a convexity in continuous optimization guarantees that a local search offers a global
solution, this is certainly not the case for discrete optimization or integer program-
ming. To support this argument, let us consider a two-dimensional example:

Example 1

min f (x) = (x − x̄)TQ(x − x̄)

s.t. x ∈ X = {x ∈ ZZ2 : 0 ≤ xi ≤ 7, i = 1, 2},
where

x =
[

x1
x2

]
, x̄ =

[
3.1
2.5

]
and Q =

[
42.67 −49.41

−49.41 57.38

]
.

The global minimizer of this problem is x∗
global = [6, 5]T with f (x∗

global) = 1. Since ma-

trix Q is positive definite, there is only one continuous local minimizer x̄ = [3.1, 2.5]T

which is also the global minimizer. An integer point x ∈ X is defined here as a discrete
local minimizer of f over X if its function value is less than or equal to that of its four
neighboring points, x ± [1, 0]T and x ± [0, 1]T , if they are included in X. From Table 1
in the Appendix, it is clear that even for a convex function, there may exist multiple
minima on an integer domain.

Wide applications of discrete global optimization and a discrepancy between inte-
ger local solutions and a global minimum solution to convex functions have made
discrete global optimization an active and challenging research area in operations
research and engineering.
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During the last three decades, various deterministic solution methods have been
proposed, e.g., branch and bound methods [11, 13], Lagrangian methods [5,9] nonlin-
ear Lagrangian methods [14, 16, 25, 27], etc. However, these methods can only tackle
relatively small scale general integer optimization problems.

The filled function methods are promising for continuous global optimization. The
concept of the filled function together with the first filled function method were pre-
sented by Ge at the Tenth Biennial Conference on Numerical Analysis at Dundee,
Scotland, in 1983, and his paper [6] was published in 1990. Thereafter, several filled
functions with improved theoretical and computational properties better than the one
in [6] have been proposed (see, e.g., [8, 17, 21, 26, 29]). Moreover, the filled function
methods have been successfully applied in solving some practical problems (see, e.g.,
[1–3, 18]. Due to the promising results of the filled function methods for continuous
global optimization, filled function approaches to discrete global optimization have
been investigated since late 1980s. A survey of the utilization of the filled function
methods in discrete global optimization can be found in [22].

The filled function approaches to discrete global optimization can be classified
into two categories: continuous approaches and discrete approaches. Continuous ap-
proaches transform a discrete global optimization problem into a continuous global
optimization problem and then solve it by some filled function methods. Methods
using continuous approaches include [7] and [28]. As demonstrated in [22], the trans-
formed objective function always generate more minima than the original objective
function f . From the experience of continuous global optimization, a problem has
more local minima is, in general, more difficult to be solved globally.

Discrete approaches search for a “discrete local minimizer” of f over X by a “gra-
dient-free direct search method.” Zhu [31] was probably the first one who used a filled
function method in a discrete approach to discrete global optimization. He specifically
used the traditional continuous filled function in [6] in his discrete approach. How-
ever, as demonstrated in [22], his method has some implementation problems. First,
his discrete approach inherits the weakness of the continuous filled function in numer-
ical implementation: the change in the filled function value is indistinguishable when
the distance between the current iterative point, x, and the current local minimizer,
x∗, being large. Moreover, a continuous filled function only guarantees that if f has a
basin B∗∗

c that is lower than the current basin B∗
c at x∗, then there is a point x′ in B∗∗

c
that minimizes the continuous filled function on a straight line connecting x and x∗.
These requirements are unlikely to be satisfied in discrete cases, not only because x′
may not be an integer point, but also because not every point on the straight line is
feasible in a discrete domain.

Recently, Ng et al. [23] proposed and formalized a discrete version of the filled
function method, namely the discrete filled function method, for solving (P). Their
method moves from one discrete local minimizer (see Definition 5) of f to another
better one at each iteration with the help of an auxiliary function, namely the dis-
crete filled function. The discrete filled function Fx∗ ensures that the current discrete
minimizer x∗ of f is a strict discrete maximizer of Fx∗ . Moreover, Fx∗ has no discrete
minimizer in the current discrete basin B∗ at x∗ or in any discrete basin of f higher than
B∗. Furthermore, if f has a discrete basin B∗∗ at x∗∗ that is lower than B∗, then there
is an integer point x′ ∈ B∗∗ that minimizes Fx∗ on a discrete path (see Definition 1)
{ x∗, . . . , x′, . . . , x∗∗ } in X. These properties are promising for finding such a transitional
discrete point x′ and in turn finding a better discrete minimizer x∗∗ by some classical
local search method, e.g., the discrete steepest descent method (see Algorithm 1). As
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witnessed in the numerical experiments reported in [23], the discrete filled function
was efficient. Nevertheless, the theory of the discrete filled function only ensures that
x′ is a one-dimensional discrete minimizer over a discrete path. It does not guaran-
tee x′ is a true discrete minimizer over X. This property introduces some numerical
difficulties in the realization of the discrete filled function method in solving some
practical problems.

In this paper, we enhance the concept of the discrete filled function and propose a
family of sophisticated auxiliary functions, entitled the discrete global descent func-
tion, that not only keeps all the properties of a discrete filled function, but also ensures
that x′ coincides with x∗∗ under some standard assumptions. This additional property
guarantees that a better discrete minimizer of f , if it exists, can be found by some
classical local search methods at each iteration.

This paper is organized as follows. Following this introduction, we present some
preliminaries in Sect. 2 to streamline the discussion in this paper. In Sect. 3, we first
give a formal definition of a discrete global descent function. We then propose a family
of two-parameter discrete global descent functions and investigate its properties as
well. After that, we consider the numerical implementation of the proposed discrete
global descent method and suggest a solution algorithm in Sect. 4. In Sect. 5, we first
demonstrate the solution procedures of the algorithm by an illustrative example. We
then report the results of the algorithm in solving several test problems with up to 100
variables and up to 1.38 × 10104 feasible points. Finally, we draw some conclusions in
Sect. 6.

2 Preliminaries

The aim of this section is to streamline the discussion in this paper. We recall some
definitions and preliminary results in discrete analysis and discrete optimization.

2.1 Sets

Definition 1 A sequence { x(i) }u+1
i=0 is called a discrete path in X between two distinct

points x∗ and x∗∗ in X if x(0) = x∗, x(u+1) = x∗∗, x(i) ∈ X for all i, x(i) 
= x(j) for i 
= j and
‖x(i+1) − x(i)‖ = 1 for all i. If such a discrete path exists, then x∗ and x∗∗ are said to be
pathwise connected in X. Furthermore, if every two distinct points in X are pathwise
connected in X, then X is called a pathwise connected set.

Definition 2 The set of all axial directions in ZZn is defined by D = {±ei : i =
1, 2 . . . , n }, where ei is the ith unit vector (the n-dimensional vector with the ith com-
ponent equal to one and all other components equal to zero).

Definition 3 For any x ∈ ZZn, the discrete neighborhood of x is defined by N(x) =
{ x, x ± ei : i = 1, 2, . . . , n }.
Definition 4 A point x ∈ X is called a corner point of X if for each d ∈ D, x + d ∈ X

implies x − d 
∈ X.

2.2 Discrete Optimization

Definition 5 A point x∗ ∈ X is called a (discrete) local minimizer of f over X if
f (x∗) ≤ f (x) for all x ∈ X ∩ N(x∗). Furthermore, if f (x∗) ≤ f (x) for all x ∈ X, then x∗
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is called a (discrete) global minimizer of f over X. If, in addition, f (x∗) < f (x) for all
x ∈ X ∩ N(x∗)\x∗, then x∗ is called a strict (discrete) local/global minimizer of f
over X.

Definition 6 For any x ∈ X, d ∈ D is said to be a descent direction of f at x over X

if x + d ∈ X and f (x + d) < f (x). Furthermore, d∗ ∈ D is called a discrete steepest
descent direction of f at x over X if f (x + d∗) ≤ f (x + d) for any other descent
direction d.

Similar to the continuous situation, we can design a discrete version of a steepest
descent method for finding a local minimizer of f over X.

Algorithm 1 (Discrete Steepest Descent Method)

0. Choose an initial point x ∈ X.
1. If x is a local minimizer of f over X, then stop. Otherwise, a discrete steepest descent

direction d∗ ∈ D of f at x over X can be found.
2. Let x := x+λd∗, where λ ∈ ZZ+ is the step size such that f has a maximum decrease

in the direction d∗. Go to Step 1.

2.3 Preliminary Results

The following basic properties will be useful in the later analysis. The proofs are not
difficult and are thus omitted. Interested readers may find the proofs in [15, 21].

Lemma 1

(a) For any x∗, x∗∗ ∈ X and d ∈ D, it holds ‖x∗ − x∗∗‖ 
= ‖x∗ + d − x∗∗‖.
(b) For any x∗, x∗∗ ∈ X, if there exists i ∈ { 1, 2, . . . , n } such that both x∗ ± ei ∈ X, then

there exists d ∈ {±ei } such that ‖x∗ + d − x∗∗‖ > ‖x∗ − x∗∗‖.
(c) If x∗ and x∗∗ are distinct strict local minimizers of f over X, then ‖x∗ − x∗∗‖ > 1.

3 A family of discrete global descent functions and its properties

Denote by X
c the set of corner points of X. Let x∗ be a local minimizer of f over X.

Also, let X̂(x∗) = { x ∈ X : x 
= x∗, f (x) ≥ f (x∗) }. We now give the formal definition
for discrete global descent functions.

Definition 7 A function Gx∗ : X �→ IR is said to be a discrete global descent
function of f at x∗ if it satisfies the following conditions:

(D1) x∗ is a strict local maximizer of Gx∗ over X;
(D2) Gx∗ has no local minimizer in the set X̂(x∗)\X

c;
(D3) x∗∗ ∈ X\X

c is a local minimizer of f over X with f (x∗∗) < f (x∗) if and only if x∗∗
is a local minimizer of Gx∗ over X.

We now propose a family of two-parameter discrete global descent functions for
problem (P) at a local minimizer x∗ of f over X. Define

Gµ,ρ,x∗(x) = Aµ(f (x) − f (x∗)) − ρ‖x − x∗‖, (3)

where ρ > 0 and 0 < µ < 1 are problem-dependent parameters,

Aµ(y) = y · Vµ(y), (4)

and Vµ : IR �→ IR is a continuous function that satisfies the following conditions:
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(V1) Vµ(y) is strictly decreasing when y < 0 and non-increasing when y ≥ 0,
(V2) Vµ(−τ) = 1, Vµ(0) = µ, and Vµ(y) ≥ cµ for all y,

where τ > 0 is a sufficiently small number and 0 < c ≤ 1 is a constant. In theory, the
parameter τ is required to satisfy:

0 < τ < min{|f (x(1)) − f (x(2))| : x(1), x(2) ∈ X, f (x(1)) 
= f (x(2))}. (5)

Thus, for any x(1), x(2) ∈ X, f (x(1)) < f (x(2)) implies f (x(1)) < f (x(2)) − τ . If f is an
integer-valued function over X, we can simply set τ as a positive number less than
1. However, the discrete global descent algorithm developed in Sect. 4 is insensitive
to the value of τ in numerical implementation. Therefore, τ is always set at 1 in
calculation.

Some examples of Vµ that satisfy the above conditions are as follows.

Example 2 Define

Vµ(y) =

 (1 − µ)

(
y

−τ

)k+1

+ µ, if y < 0

µ, if y ≥ 0

for k = 0, 1, 2, . . . .

Then Vµ ∈ Ck and Vµ satisfies conditions (V1) and (V2) with c = 1.

Example 3 Define

V1
µ(y) = µ

[
(1 − c)

(
1 − cµ
µ − cµ

)−y/τ

+ c

]
,

V2
µ(y) = µ

[√
(c′y)2 + (1 − c)2 + c − c′y

]
,

where 0 < c < 1 and c′ = (1 − µ)(1 + µ − 2cµ)

2µτ(1 − cµ)
.

It can be verified that both V1
µ and V2

µ ∈ C∞ and satisfy conditions (V1) and (V2).
Figure 1 in the Appendix illustrates V1

µ(y), V2
µ(y), A1

µ(y) = y · V1
µ(y) and A2

µ(y) =
y · V2

µ(y) with c = µ = 0.5 and τ = 1.
The following lemma reveals some important properties of Aµ. These properties

will be useful in the later analysis. The proofs are not difficult and are thus omitted.
Interested readers may find the proofs in [15, 21].

Lemma 2

(a) sgn (Aµ(y)) = sgn (y).
(b) Aµ(y) is a strictly increasing function of y for y ≤ 0.
(c) If y(1) < y(2) ≤ −τ , then 0 < y(2) − y(1) < Aµ(y(2)) − Aµ(y(1)).
(d) If y(1) < −τ < y(2) < 0, then

Aµ(y(1)) < y(1) < −τ < y(2) < Aµ(y(2)) < 0.

In the next three Subsections (3.1–3.3), we will show that Gµ,ρ,x∗ satisfies condi-
tions (D1)–(D3) if the parameters µ and ρ satisfy certain conditions. We then provide
an illustrative example for the proposed family of discrete global descent function in
Subsection 3.4.
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3.1 The proposed family of discrete global descent functions
satisfies condition (D1)

Lemma 3 Let x̄ ∈ X̂(x∗). If ρ > 0 and 0 < µ < min
{
1, ρ

L

}
, then Gµ,ρ,x∗(x̄) < 0 =

Gµ,ρ,x∗(x∗).

Proof Since f (x̄) ≥ f (x∗), by Assumption 3, we have 0 ≤ f (x̄) − f (x∗) ≤ L‖x̄ − x∗‖.
Moreover, from the definition of Vµ, we have Vµ(y) ≤ µ for all y ≥ 0. Thus, Vµ(f (x̄)−
f (x∗)) ≤ µ. Therefore,

Aµ(f (x̄) − f (x∗)) = [f (x̄) − f (x∗)] · Vµ(f (x̄) − f (x∗)) ≤ L‖x̄ − x∗‖ · µ.

Since ‖x̄ − x∗‖ > 0, so if ρ > 0 and 0 < µ < min
{
1, ρ

L

}
, we have

Gµ,ρ,x∗(x̄) = Aµ(f (x̄) − f (x∗)) − ρ‖x̄ − x∗‖
≤ Lµ‖x̄ − x∗‖ − ρ‖x̄ − x∗‖ < 0 = Gµ,ρ,x∗(x∗).

�
Theorem 4 If ρ > 0 and 0 < µ < min

{
1, ρ

L

}
, then x∗ is a strict local maximizer of

Gµ,ρ,x∗ over X. If, in addition, x∗ is a global minimizer of f over X, then Gµ,ρ,x∗(x) < 0
for all x ∈ X\x∗.

Proof Since x∗ is a local minimizer of f over X, thus f (x) ≥ f (x∗) for all x ∈ X∩N(x∗).
By Lemma 3, if ρ > 0 and 0 < µ < min

{
1, ρ

L

}
, then Gµ,ρ,x∗(x) < 0 = Gµ,ρ,x∗(x∗) for

all x ∈ X ∩ N(x∗)\x∗. Therefore, x∗ is a strict local maximizer of Gµ,ρ,x∗ .
If x∗ is a global minimizer of f over X, then f (x) ≥ f (x∗) for all x ∈ X. The result

then follows from Lemma 3. �

From Theorem 4, we conclude that Gµ,ρ,x∗ satisfies the condition (D1) if ρ > 0 and
0 < µ < min

{
1, ρ

L

}
.

3.2 The proposed family of discrete global descent functions
satisfies condition (D2)

Lemma 5 Let x(1) and x(2) be two integer points in X̂(x∗) such that 0 < ‖x(1) − x∗‖ <

‖x(2) − x∗‖. If ρ > 0 and 0 < µ < min
{

1, ρ

(2K2L)

}
, then

Gµ,ρ,x∗(x(2)) < Gµ,ρ,x∗(x(1)) < 0 = Gµ,ρ,x∗(x∗). (6)

Proof We first show that

1 − ‖x(1) − x∗‖
‖x(2) − x∗‖ >

1
2K2 . (7)

Since x(1), x(2) and x∗ are integer points and ‖x(1) − x∗‖ < ‖x(2) − x∗‖, it holds

‖x(2) − x∗‖2 − ‖x(1) − x∗‖2 ≥ 1. (8)

Moreover, by Assumption 1, we have 0 < ‖x(2) − x∗‖ + ‖x(1) − x∗‖ < 2K. It then
follows from (8) that

‖x(2) − x∗‖ − ‖x(1) − x∗‖ ≥ 1
‖x(2) − x∗‖ + ‖x(1) − x∗‖ >

1
2K

.
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Dividing both side of the above inequality by ‖x(2) − x∗‖ and using ‖x(2) − x∗‖ ≤ K
give rise to (7).

Since f (x(2)) ≥ f (x∗), by Assumption 3, we have 0 ≤ f (x(2)) − f (x∗) ≤ L‖x(2) −
x∗‖. Moreover, from the definition of Vµ, we have Vµ(y) ≤ µ for all y ≥ 0. Thus,
Vµ(f (x(2)) − f (x∗)) ≤ µ and

Aµ(f (x(2)) − f (x∗)) = [f (x(2)) − f (x∗)] · Vµ(f (x(2)) − f (x∗))
≤ L‖x(2) − x∗‖ · µ.

Besides, since f (x(1)) ≥ f (x∗), by Lemma 2(a), we have Aµ(f (x(1)) − f (x∗)) ≥ 0.

Therefore, by (7), if ρ > 0 and 0 < µ < min
{

1, ρ

(2K2L)

}
, then

Gµ,ρ,x∗(x(2)) − Gµ,ρ,x∗(x(1)) = [Aµ(f (x(2)) − f (x∗)) − Aµ(f (x(1)) − f (x∗))]
− ρ(‖x(2) − x∗‖ − ‖x(1) − x∗‖)

≤ Lµ‖x(2) − x∗‖ − ρ(‖x(2) − x∗‖ − ‖x(1) − x∗‖)

= ‖x(2) − x∗‖ ·
[

Lµ − ρ

(
1 − ‖x(1) − x∗‖

‖x(2) − x∗‖

)]

< ‖x(2) − x∗‖ ·
(

Lµ − ρ

2K2

)
< 0.

By Assumption 1, we have K ≥ 1, thus 0 < µ < min
{
1, ρ/(2K2L)

} ≤ min {1, ρ/L} .
The second inequality of (6) follows directly from Lemma 3. �

Theorem 6 Let d̄ ∈ D be a feasible direction at an integer point x̄ ∈ X̂(x∗) such that
‖x̄+ d̄−x∗‖ > ‖x̄−x∗‖. If ρ > 0 and 0 < µ < min

{
1, ρ/(2K2L)

}
, then Gµ,ρ,x∗(x̄+ d̄) <

Gµ,ρ,x∗(x̄) < 0 = Gµ,ρ,x∗(x∗).

Proof Consider the following two cases:
Case (i): f (x̄+ d̄) ≥ f (x∗). Since both x̄ and x̄+ d̄ ∈ X̂(x∗), 0 < ‖x̄−x∗‖ < ‖x̄+ d̄−x∗‖,
ρ > 0 and 0 < µ < min

{
1, ρ/(2K2L)

}
, it follows from Lemma 5 that Gµ,ρ,x∗(x̄ + d̄) <

Gµ,ρ,x∗(x̄) < 0 = Gµ,ρ,x∗(x∗).
Case (ii): f (x̄ + d̄) < f (x∗) ≤ f (x̄). From Lemma 2(a), we have Aµ(f (x̄ + d̄)− f (x∗)) <

0 ≤ Aµ(f (x̄) − f (x∗)). Therefore, for ρ > 0,

Gµ,ρ,x∗(x̄ + d̄) = Aµ(f (x̄ + d̄) − f (x∗)) − ρ‖x̄ + d̄ − x∗‖
< Aµ(f (x̄) − f (x∗)) − ρ‖x̄ − x∗‖ = Gµ,ρ,x∗(x̄).

Since 0 < µ < min
{
1, ρ/(2K2L)

} ≤ min {1, ρ/L} , by Lemma 3, we have Gµ,ρ,x∗

(x̄ + d̄) < Gµ,ρ,x∗(x̄) < 0 = Gµ,ρ,x∗(x∗). �

Corollary 7 If ρ > 0 and 0 < µ < min
{
1, ρ/(2K2L)

}
, then Gµ,ρ,x∗ satisfies the condi-

tion (D2).

Proof For any x̄ ∈ X̂(x∗)\X
c, since x̄ is not a corner point of X, there exists i ∈

{1, 2, . . . , n} such that x̄ ± ei ∈ X. By Lemma 1(b), there exists d̄ ∈ {±ei} such that
‖x̄ + d̄ − x∗‖ > ‖x̄ − x∗‖. By Theorem 6, d̄ is a feasible descent direction of Gµ,ρ,x∗ at
x̄. Therefore, x̄ is not a local minimizer of Gµ,ρ,x∗ . �
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3.3 The proposed family of discrete global descent functions
satisfies condition (D3)

Theorem 8 Let x∗∗ be a strict local minimizer of f over X with f (x∗∗) < f (x∗). If ρ > 0
is sufficiently small and 0 < µ < 1, then x∗∗ is a strict local minimizer of Gµ,ρ,x∗ over X.

Proof From Lemma 1(a), we have ‖x∗∗ + d − x∗‖ 
= ‖x∗∗ − x∗‖ for all d ∈ D. For any
feasible direction d̄ ∈ D at x∗∗, we will show that

Gµ,ρ,x∗(x∗∗) < Gµ,ρ,x∗(x∗∗ + d̄). (9)

Consider the following two cases:
Case (i): ‖x∗∗ + d̄ − x∗‖ < ‖x∗∗ − x∗‖. If f (x∗∗) < f (x∗∗ + d̄) ≤ f (x∗), it then follows
from Lemma 2(b) that

Aµ(f (x∗∗) − f (x∗)) < Aµ(f (x∗∗ + d̄) − f (x∗)). (10)

Otherwise, if f (x∗∗) < f (x∗) < f (x∗∗ + d̄), from Lemma 2(a), we have

Aµ(f (x∗∗) − f (x∗)) < 0 < Aµ(f (x∗∗ + d̄) − f (x∗)). (11)

Inequalities (10) and (11) imply that

Gµ,ρ,x∗(x∗∗) = Aµ(f (x∗∗) − f (x∗)) − ρ‖x∗∗ − x∗‖
< Aµ(f (x∗∗ + d̄) − f (x∗)) − ρ‖x∗∗ + d̄ − x∗‖
= Gµ,ρ,x∗(x∗∗ + d̄).

Case (ii): ‖x∗∗ + d̄−x∗‖ > ‖x∗∗ −x∗‖. By (5), f (x∗∗) < f (x∗) implies f (x∗∗) < f (x∗)−τ .
Consider the following three cases:

f (x∗∗) < f (x∗∗ + d̄) ≤ f (x∗) − τ , (12)

f (x∗∗) < f (x∗) − τ < f (x∗∗ + d̄) < f (x∗), (13)

f (x∗∗) < f (x∗) − τ < f (x∗) ≤ f (x∗∗ + d̄). (14)

If (12) holds, from Lemma 2(c), we have

f (x∗∗ + d̄) − f (x∗∗) < Aµ(f (x∗∗ + d̄) − f (x∗)) − Aµ(f (x∗∗) − f (x∗)). (15)

Let

ρ1 = min
d∈D0(x∗∗)

f (x∗∗ + d) − f (x∗∗)
K

, (16)

where D0(x∗∗) = { d ∈ D : x∗∗ +d ∈ X }. Since x∗∗ is a strict local minimizer of f over X,
we have ρ1 > 0. Also, by Assumption 1 and Lemma 1(c), ‖x∗∗+d̄−x∗‖−‖x∗∗−x∗‖ < K.
Therefore, if 0 < ρ ≤ ρ1, we obtain from (15) that

ρ ≤ ρ1 ≤ f (x∗∗ + d̄) − f (x∗∗)
K

<
Aµ(f (x∗∗ + d̄) − f (x∗)) − Aµ(f (x∗∗) − f (x∗))

‖x∗∗ + d̄ − x∗‖ − ‖x∗∗ − x∗‖ ,

which in turn implies (9).
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If (13) holds, by Lemma 2(d), we have Aµ(f (x∗∗)− f (x∗)) < f (x∗∗)− f (x∗) < −τ <

f (x∗∗ + d̄) − f (x∗) < Aµ(f (x∗∗ + d̄) − f (x∗)) < 0. Therefore, (15) is satisfied and hence
(9) holds if 0 < ρ < ρ1.

Finally, if (14) holds, since f (x∗∗ + d̄) − f (x∗) ≥ 0, by Lemma 2(a), we have

Aµ(f (x∗∗ + d̄) − f (x∗)) ≥ 0. (17)

Moreover, since f (x∗∗) − f (x∗) < −τ , by Lemma 2(d), we have

Aµ(f (x∗∗) − f (x∗)) < −τ . (18)

Let ρ2 = τ
K . If 0 < ρ ≤ ρ2, by (17) and (18), we have

ρ ≤ τ

K
<

τ

‖x∗∗ + d̄ − x∗‖ − ‖x∗∗ − x∗‖
<

Aµ(f (x∗∗ + d̄) − f (x∗)) − Aµ(f (x∗∗) − f (x∗))
‖x∗∗ + d̄ − x∗‖ − ‖x∗∗ − x∗‖ .

Thus, (9) holds.
In summary, if 0 < ρ ≤ min{ρ1, ρ2}, then x∗∗ is a strict local minimizer of Gµ,ρ,x∗

over X. �

Theorem 8 assumes that the better local minimizer x∗∗ of f over X is strict. This
requirement on x∗∗ can be relaxed to

f (x∗∗ + d̄) > f (x∗∗), for all d̄ ∈ D1(x
∗∗, x∗), (19)

where D1(x∗∗, x∗) = { d ∈ D : x∗∗ + d ∈ X, ‖x∗∗ + d − x∗‖ > ‖x∗∗ − x∗‖ }.
Theorem 9 Let x∗∗ be a local minimizer of f over X with f (x∗∗) < f (x∗) that satisfies
(19). If ρ > 0 is sufficiently small and 0 < µ < 1, then x∗∗ is a strict local minimizer of
Gµ,ρ,x∗ over X.

Proof From Lemma 1(a), we have ‖x∗∗ + d − x∗‖ 
= ‖x∗∗ − x∗‖ for all d ∈ D. Let
d̄ ∈ D be a feasible direction at x∗∗. Since x∗∗ is a local minimizer of f over X, thus
f (x∗∗ + d̄) ≥ f (x∗∗). If, in addition, ‖x∗∗ + d̄ − x∗‖ > ‖x∗∗ − x∗‖, by (19), we have
f (x∗∗ + d(1)) > f (x∗∗). To prove (9), we can use the similar arguments as in the proof
of Theorem 8 except for the following additional case: ‖x∗∗ + d̄ − x∗‖ < ‖x∗∗ − x∗‖
and f (x∗∗) = f (x∗∗ + d̄) < f (x∗). In this case, we have

Gµ,ρ,x∗(x∗∗) = Aµ(f (x∗∗) − f (x∗)) − ρ‖x∗∗ − x∗‖
< Aµ(f (x∗∗ + d̄) − f (x∗)) − ρ‖x∗∗ + d̄ − x∗‖
= Gµ,ρ,x∗(x∗∗ + d̄).

Thus, (9) holds. �

Theorem 9 clearly states that if there exists a pathwise connected set X∗∗ such that
every x ∈ X∗∗ is a local minimizer of f over X and f (x) < f (x∗), then the farthest point
x∗∗ ∈ X∗∗ away from x∗ is a strict local minimizer of Gµ,ρ,x∗ over X, provided that
ρ > 0 is sufficiently small and 0 < µ < 1.

Theorem 10 Let x′ be a local minimizer of Gµ,ρ,x∗ over X and d̄ ∈ D be a feasible
direction at x′ such that ‖x′ + d̄ − x∗‖ > ‖x′ − x∗‖. If ρ > 0 is sufficiently small and
0 < µ < min

{
1, ρ/(2K2L)

}
, then x′ is a local minimizer of f over X.
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Proof Since x∗ is a local minimizer of f over X, by Theorem 4, x∗ is a strict local
maximizer of Gµ,ρ,x∗ . Therefore, x′ 
= x∗. We claim that f (x′) < f (x∗). Suppose on the
contrary that f (x′) ≥ f (x∗). Then x′ ∈ X̂(x∗). Since ‖x′ + d̄ − x∗‖ > ‖x′ − x∗‖, by The-
orem 6, we have Gµ,ρ,x∗(x′ + d̄) < Gµ,ρ,x∗(x′), a contradiction to the assumption that
x′ is a local minimizer of Gµ,ρ,x∗ over X. Therefore, f (x′) < f (x∗) and f (x′) < f (x∗)− τ

by the definition of τ .
Now, suppose on the contrary that x′ is not a local minimizer of f over X. Then

there exists a descent direction d′ ∈ D at x′ such that f (x′ + d′) < f (x′) and hence
f (x′ + d′) − f (x∗) < f (x′) − f (x∗) < −τ . By Lemma 2(c), we have

0 < f (x′) − f (x′ + d′) < Aµ(f (x′) − f (x∗)) − Aµ(f (x′ + d′) − f (x∗)). (20)

Since, from Lemma 1(a), ‖x′ + d′ − x∗‖ 
= ‖x′ − x∗‖. If ‖x′ + d′ − x∗‖ > ‖x′ − x∗‖, by
(20), we have

Gµ,ρ,x∗(x′ + d′) = Aµ(f (x′ + d′) − f (x∗)) − ρ‖x′ + d′ − x∗‖
< Aµ(f (x′) − f (x∗)) − ρ‖x′ − x∗‖ = Gµ,ρ,x∗(x′),

which contradicts the assumption that x′ is a local minimizer of Gµ,ρ,x∗ .
On the other hand, if ‖x′ + d′ − x∗‖ < ‖x′ − x∗‖, we then choose ρ such that

0 < ρ ≤ ρ3, where

ρ3 = min
d∈D0(x′)

f (x′) − f (x′ + d)

K
> 0 (21)

and D0(x′) = { d ∈ D : x′ + d ∈ X }. By (20) and (21), we have

ρ ≤ f (x′) − f (x′ + d′)
K

<
Aµ(f (x′) − f (x∗)) − Aµ(f (x′ + d′) − f (x∗))

‖x′ − x∗‖ − ‖x′ + d′ − x∗‖ .

This implies Gµ,ρ,x∗(x′ + d′) < Gµ,ρ,x∗(x′). Again, this is a contradiction. �

Corollary 11 Assume that every local minimizer of f over X is strict. Suppose that
ρ > 0 is sufficiently small and 0 < µ < min{1, ρ/(2K2L)}. Then, x∗∗ ∈ X\X

c is a local
minimizer of f over X with f (x∗∗) < f (x∗) if and only if x∗∗ is a local minimizer of
Gµ,ρ,x∗ over X.

Proof The “if” part follows directly from Theorem 8. Now, suppose that x∗∗ is a local
minimizer of Gµ,ρ,x∗ over X. Since x∗∗ 
∈ X

c, there exists i ∈ { 1, 2, . . . , n } such that both
x∗∗±ei ∈ X. Thus, by Lemma 1(b), there exists a feasible direction d ∈ {±ei } at x∗∗ such
that ‖x∗∗+d−x∗‖ > ‖x∗∗−x∗‖. If ρ > 0 is small enough and 0 < µ ≤ min{1, ρ(2K2L)},
by Theorem 10, x∗∗ is a local minimizer of f over X. �

Corollary 11 indicates that if every local minimizer of f over X is strict, then Gµ,ρ,x∗
satisfies the condition (D3) for suitable parameters µ and ρ.

3.4 An illustration of the proposed family of discrete global descent functions

We consider now the following illustrative example.
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Example 4 (3-hump back camel function)

min f (x) = 2x2
1 − 1.05x4

1 + 1
6

x6
1 − x1x2 + x2

2,

s.t. xi = yi/1000, i = 1, 2,

−2000 ≤ y1 ≤ 2000, −1500 ≤ y2 ≤ 1500, y1, y2 integers.

This problem has three local minima: x∗1 = [−1.748, −0.874]T with f (x∗1) = 0.2986,
x∗2 = [1.748, 0.874]T with f (x∗2) = 0.2986 and x∗3 = [0, 0]T with f (x∗3) = 0, among
which x∗3 is the global optimal solution. Let x∗ = x∗2 be the current local minimizer.
We construct a discrete global descent function Gµ,ρ,x∗ at x∗ with µ = ρ = 0.01.
Figure 2 in the Appendix shows the contours of f and Gµ,ρ,x∗ and the figures of f and
Gµ,ρ,x∗ .

4 Numerical implementation and solution algorithm

Based on the theoretical results in the previous section, the discrete global descent
method for (P) is described now as follows.

Algorithm 2 (Discrete Global Descent Method for DGO and NLIP)

0. (Initialization).
(i) Choose a function Vµ satisfying conditions (V1) and (V2).

(ii) Choose an initial point xini ∈ X, a lower bound of ρ: ρL > 0, and two fractions:
ρ̂ (0 < ρ̂ < 1) and µ̂ (0 < µ̂ < 1).

(iii) Starting from xini, apply Algorithm 1 to obtain a local minimizer x∗ of f over
X. Set k := 0.

1. Generate a set of m initial points: { x(i)
ini ∈ X\x∗ : i = 1, 2, . . . , m }. Set i := 1.

2. Set the current point xcur := x(i)
ini.

3. If f (xcur) < f (x∗), then starting from xcur, apply Algorithm 1 to find a local min-
imizer x∗∗ of f over X such that f (x∗∗) < f (x∗). Set x∗ := x∗∗, k := k + 1. Go to
Step 1.

4. Let D0 := { d ∈ D : xcur +d ∈ X }. If there exists d ∈ D0 such that f (xcur +d) < f (x∗),
then starting from xcur +d∗, where d∗ = arg min{ f (xcur +d) : d ∈ D0 }, apply Algo-
rithm 1 to find a local minimizer x∗∗ such that f (x∗∗) < f (x∗). Set x∗ := x∗∗,
k := k + 1. Go to Step 1.

5. If xcur is a local minimizer of Gµ,ρ,x∗ and the set D1 := { d ∈ D0 : ‖xcur + d − x∗‖ >

‖xcur − x∗‖ } is empty, then go to Step 8.
6. If xcur is a local minimizer of Gµ,ρ,x∗ , then set µ0 := µ and choose a positive integer

l such that µ = µ̂lµ0 and there exists a descent direction of Gµ,ρ,x∗ at xcur.
7. Let D2 := { d ∈ D0 : Gµ,ρ,x∗(xcur + d) < Gµ,ρ,x∗(xcur), f (xcur + d) < f (xcur) }. If

D2 
= ∅, then set

d∗ := arg min{ f (xcur + d) + Gµ,ρ,x∗(xcur + d) : d ∈ D2 }.
Otherwise set

d∗ := arg min{ Gµ,ρ,x∗(xcur + d) : d ∈ D0 }.
Set xcur := xcur + d∗. Go to Step 4.

8. Set i := i + 1. If i ≤ m, go to Step 2.
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9. Set ρ := ρ̂ρ. If ρ ≥ ρL, then go to Step 1. Otherwise, the algorithm is incapa-
ble of finding a better local minimizer starting from the initial points, { x(i)

ini : i =
1, 2, . . . , m }. The algorithm stops and x∗ is taken as a global minimizer.

The motivation and mechanism behind the algorithm are explained below.
A set of m initial points is generated in Step 1 to minimize Gµ,ρ,x∗ . If no addi-

tional information about the objective function is provided, we set the initial points
symmetric about the current local minimizer. For example, we can set m = 2n and
choose x∗ ± ei, for i = 1, 2, . . . , n, as initial points for the discrete global descent
method.

Step 3 represents the situation where the current initial point, x(i)
ini, satisfies f (x(i)

ini) <

f (x∗). Therefore, we can further minimize the objective function f by any discrete local
minimization method starting from x(i)

ini. Note that, Step 3 is necessary only if we choose
some initial points outside the discrete neighborhood of x∗.

Recall from Theorem 6 that if f (xcur) ≥ f (x∗) and µ is sufficiently small, then
xcur cannot be a local minimizer of Gµ,ρ,x∗ . In determining whether the current point
xcur is a local minimizer of Gµ,ρ,x∗ , we compare Gµ,ρ,x∗(xcur) with Gµ,ρ,x∗(x) for all
x ∈ X ∩ N(xcur)\xcur. Step 4 represents the situation where one of the feasible neigh-
boring points of xcur, namely xcur + d∗ with d∗ ∈ D, has a smaller objective function
value than the current local minimum. We can then further minimize f by any discrete
local minimization method starting from xcur + d∗.

If it is found that xcur is a local minimizer of Gµ,ρ,x∗ with f (xcur) ≥ f (x∗), this implies
that µ is not small enough. Step 5 represents the situation when it is impossible to
move further away from x∗ than xcur and thus xcur must be a corner point of X. Then,
we give up the point xcur without reducing the value of µ and try another initial point
generated in Step 1. On the other hand, if xcur is not a corner point of X, then Step 6
reduces the value of µ to a pre-selected fraction recursively until there exists a descent
direction of Gµ,ρ,x∗ at xcur.

Step 7 aims at selecting a more promising successor point. Note that if the algo-
rithm goes from Step 6 to Step 7, Gµ,ρ,x∗ has at least one descent direction at xcur. If
there exists a descent direction of both f and Gµ,ρ,x∗ at xcur, we then reduce both f
and Gµ,ρ,x∗ at the same time in order to take advantages of their reductions. On the
other hand, if every descent direction of Gµ,ρ,x∗ at xcur is an increasing direction of f
at xcur, we reduce Gµ,ρ,x∗ alone.

Recall from Corollary 11 that the value of ρ should be selected small enough.
Otherwise, there could not exist a local minimizer of Gµ,ρ,x∗ , even there exists a better
x∗∗ with f (x∗∗) < f (x∗). Thus, the value of ρ is reduced successively in the solution
process in Step 9 if no better solution is found when minimizing the discrete global
descent function. If the value of ρ reaches its lower bound ρL and no better solution
is found, the current local minimizer is taken as a global minimizer.

5 Numerical experiment

The developed discrete global descent method is programmed in Matlab 6.5 Re-
lease 13 and run on a Pentium IV system with 3.2 GHz CPU. An illustrative example
is given first in the following to show the solution procedure of the algorithm described
in the previous section. The computational results in solving several test problems are
then reported.
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Through out the tests, V1
µ(y) (in Example 3) with τ = 1 and c = 0.5 is selected for

the discrete global descent function. Algorithm 1 is used to perform local searches.
Suppose that a local minimizer x∗∗ of f over X is obtained using x∗ + ej as the initial
point, the neighboring points of x∗∗ are then arranged in the following order as the
initial points in minimizing the discrete global descent function:

x∗∗ + ej,

x∗∗ + ej+1, x∗∗ − ej+1, . . . , x∗∗ + en, x∗∗ − en,

x∗∗ + e1, x∗∗ − e1, . . . , x∗∗ + ej−1, x∗∗ − ej−1,

x∗∗ − ej.

Notice that, if the current local minimizer of f is on the boundary of X, then there are
less than 2n initial points. In addition, ρ = ρL = 0.1 is set in all the tests. In other words,
if the algorithm could not find a local minimizer of Gµ,ρ,x∗ using all initial points, the
algorithm stops immediately. Besides these, µ = 0.1 is set at the beginning of the
algorithm. Once the current µ is classified as insufficiently small, µ is reduced to µ/10.

In each test problem, we will first give a mathematical model. After that, we will
summarize the computational results of the discrete global descent method with the
number of runs of the algorithm (Ntest), the number of iteration cycles (Niter), the
CPU time in seconds to obtain the final results (Tfinal), the CPU time in seconds for
the algorithm to stop at Step 9 (Tstop), the total number of objective function evalu-
ations to obtain the final results (Nfinal), and the total number of objective function
evaluations to stop at Step 9 (Nstop).

We consider now the following illustrative example.

Example 5 ([7, 28)]

min f (x) = x1 + 10x2

s.t. 66x1 + 14x2 ≥ 1430,

−82x1 + 28x2 ≥ 1306,

0 ≤ x1 ≤ 15, 68 ≤ x2 ≤ 102, x1, x2 integers.

This problem has 314 feasible points. The global minimum solution is x∗
global =

[7, 70]T with f (x∗
global) = 707.

The algorithm starts from a feasible point xini = [15, 102]T with f (xini) = 1035.
By the discrete steepest descent method, an initial local minimizer x∗ = [3, 88]T is
obtained with f (x∗) = 883.

In the first iteration of the algorithm, µ = 0.1 is found to be not small enough.
When µ = 0.01, the algorithm starts from x(1)

ini = [4, 88]T and reaches x′ = [4, 87]T

with f (x′) = 874 < f (x∗). Then, the algorithm switches to the local search again and
obtains x∗∗ = [4, 84]T with f (x∗∗) = 844.

In the second iteration of the algorithm, the algorithm sets x∗ = [4, 84]T and starts
from x(1)

ini = [5, 84]T and reaches x′ = [5, 83]T with f (x′) = 835 < f (x∗). Then, the
algorithm switches to the local search and obtains x∗∗ = [5, 79]T with f (x∗∗) = 795.

In the same fashion, the algorithm generates x∗ = [5, 79]T , x(1)
ini = [6, 79]T , x′ =

[6, 78]T with f (x′) = 786 < f (x∗), x∗∗ = [6, 74]T with f (x∗∗) = 746 in the third iter-
ation. Similarly, the algorithm generates x∗ = [6, 74]T , x(1)

ini = [7, 74]T , x′ = [7, 73]T

with f (x′) = 737 < f (x∗), x∗∗ = [7, 70]T with f (x∗∗) = 707 in the fourth iteration. The
cumulative number of function evaluations is 79.
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In the fifth iteration of the algorithm, three starting points, [8, 70]T , [6, 70]T and
[7, 69]T are infeasible. Besides these, the algorithm cannot find a feasible point with
function value less than 707 using the remaining starting point [7, 71]T . The cumulative
number of function evaluations is 193.

In general, ρ should be reduced by a fraction and continue the process until ρ < ρL.
Since ρ = ρL = 0.1 is selected in the numerical tests, and thus the algorithm is ter-
minated. Therefore, Niter = 4, x∗

global = [7, 70]T , f (x∗
global) = 707, Nfinal = 79 and

Nstop = 193. The ratio of the number of function evaluations to reach the global
minimum to the number of feasible points is 79

314 ≈ 0.2516.
The following test problems are used in the computational experiments in testing

the discrete global descent method.

Problem 1 ([4, 19])

min f (x) = x2
1 + x2

2 + 3x2
3 + 4x2

4 + 2x2
5 − 8x1 − 2x2 − 3x3 − x4 − 2x5,

s.t. x1 + x2 + x3 + x4 + x5 ≤ 400,

x1 + 2x2 + 2x3 + x4 + 6x5 ≤ 800,

2x1 + x2 + 6x3 ≤ 200,

x3 + x4 + 5x5 ≤ 200,

x1 + x2 + x3 + x4 + x5 ≥ 55,

x1 + x2 + x3 + x4 ≥ 48,

x2 + x4 + x5 ≥ 34,

6x1 + 7x5 ≥ 104,

0 ≤ xi ≤ 99, xi integer, i = 1, 2, 3, 4, 5.

This problem has 251401581 feasible points. The global minimum solution is
x∗

global = [16, 22, 5, 5, 7]T with f (x∗
global) = 807. Five initial points were used in the test

experiment: xini = [17, 18, 7, 7, 9]T , [21, 34, 0, 0, 0]T , [0, 0, 0, 48, 15]T , [100, 0, 0, 0, 40]T

and [0, 8, 32, 8, 32]T . For every experiment, the discrete global descent method suc-
ceeded in identifying the global minimum solution. The ratio of the average number
of function evaluations to reach the global minimum to the number of feasible points
was about 1.41×10−5. A summary of the computational results is displayed in Table 2
in the Appendix.

Problem 2 (Colville’s function 4 [12, 24])

min f (x) = 100
(

x2 − x2
1

)2 + (1 − x1)
2 + 90

(
x4 − x2

3

)2 + (1 − x3)
2

+ 10.1[(x2 − 1)2 + (x4 − 1)2] + 19.8(x2 − 1)(x4 − 1),

s.t. −10 ≤ xi ≤ 10, xi integer, i = 1, 2, 3, 4.

The global minimum solution is x∗
global = [1, 1, 1, 1]T with f (x∗

global) = 0. Nine initial

points were used in the test experiment: xini = [α, α, α, α]T for α = 0, ±5, ±10, and
xini = [β, β, −β, −β]T and [β, −β, β, −β]T for β = ±10. For every experiment, the
discrete global descent method succeeded in identifying the global minimum solu-
tion. The ratio of the average number of function evaluations to reach the global
minimum to the number of feasible points was about 8.36 × 10−3. A summary of the
computational results is displayed in Table 3 in the Appendix.
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Problem 3 (Goldstein and Price’s function [10, 30])
min f (x) = g(x)h(x),

s.t. xi = yi/1000, −2000 ≤ yi ≤ 2000, yi integer, i = 1, 2,

where

g(x) = 1 + (x1 + x2 + 1)2(19 − 14x1 + 3x2
1 − 14x2 + 6x1x2 + 3x2),

h(x) = 30 + (2x1 − 3x2)
2(18 − 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2).

The global minimum solution is x∗
global = [0, −1]T with f (x∗

global) = 3. Seven ini-

tial points were used in the test experiment: xini = [α, α]T for α = 0, ±1, ±2, and
xini = [β, −β]T for β = ±2. For every experiment, the discrete global descent method
succeeded in identifying the global minimum solution. The ratio of the average num-
ber of function evaluations to reach the global minimum to the number of feasible
points was about 5.32 × 10−4. A summary of the computational results is displayed in
Table 4 in the Appendix.

Problem 4 (Beale’s function [20, 24])

min f (x) = [
1.5 − x1(1 − x2)

]2 +
[
2.25 − x1

(
1 − x2

2

)]2

+
[
2.625 − x1

(
1 − x3

2

)]2
,

s.t. xi = yi/1000, −104 ≤ yi ≤ 104, yi integer, i = 1, 2.

The global minimum solution is x∗
global = [3, 0.5]T with f (x∗

global) = 0. Seven ini-

tial points were used in the test experiment: xini = [α, α]T for α = 0, ±5, ±10, and
xini = [β, −β]T for β = ±10. For every experiment, the discrete global descent method
succeeded in identifying the global minimum solution. The ratio of the average num-
ber of function evaluations to reach the global minimum to the number of feasible
points was about 4.08 × 10−4. A summary of the computational results is displayed in
Table 5 in the Appendix.

Problem 5 (A combination of problems 231 and 233 in [24])
min f (x) = 100(x2 − x2

1)
2 + (1 − x1)

2,

s.t. x2
1 + x2

2 ≥ 0.25, −1
3

x1 + x2 ≥ −0.1,

xi = yi × 10−4, 0 ≤ yi ≤ 105, yi integer, i = 1, 2.

This problem has about 8.413 × 109 feasible points. The global minimum solution
is x∗

global = [1, 1]T with f (x∗
global) = 0. Nine initial points were used in the test exper-

iment: xini = [α, α]T for α = 2, 4, 6, 8, 10, and xini = [0, 0.5]T , [0, 10]T , [10, 3.2334]T

and [0.3536, 0.3536]T . For every experiment, the discrete global descent method suc-
ceeded in identifying the global minimum solution. The ratio of the average number
of function evaluations to reach the global minimum to the number of feasible points
was about 6.26×10−5. A summary of the computational results is displayed in Table 6
in the Appendix.
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Problem 6 (Powell’s singular function [20, 24])
min f (x) = (x1 + 10x2)

2 + 5(x3 − x4)
2 + (x2 − 2x3)

4 + 10(x1 − x4)
4,

s.t. xi = yi/1000, −104 ≤ yi ≤ 104, yi integer, i = 1, 2, 3, 4.

The global minimum solution is x∗
global = [0, . . . , 0]T with f (x∗

global) = 0. Ten initial

points were used in the test experiment: xini = [α, α, α, α]T for α = ±3, ±6, ±10, and
xini = [β, β, −β, −β]T and [β, −β, β, −β]T for β = ±10. For every experiment, the
discrete global descent method succeeded in identifying the global minimum solu-
tion. The ratio of the average number of function evaluations to reach the global
minimum to the number of feasible points was about 2.78 × 10−11. A summary of the
computational results is displayed in Table 7 in the Appendix.

Problem 7 ([24])

min f (x) = (x1 − 1)2 + (xn − 1)2 + n
n−1∑
i=1

(n − i)(x2
i − xi+1)

2,

s.t. −5 ≤ xi ≤ 5, xi integer, i = 1, 2, . . . , n.

The global minimum solution is x∗
global = [1, . . . , 1]T with f (x∗

global) = 0 for all n.
Three sizes of the problem were considered: n = 25, 50 and 100. For all problems with
different sizes, nine initial points were used in the test experiment: xini = [α, . . . , α]T

for α = 0, ±3, ±5, and xini = [β, . . . , β, β, −β, . . . , −β]T and [β, −β, β, −β, . . . ]T for
β = ±5. For every experiment, the discrete global descent method succeeded in iden-
tifying the global minimum solution. The ratios of the average numbers of function
evaluations to reach the global minima to the numbers of feasible points were about
2.30 × 10−23, 8.27 × 10−49 and 2.74 × 10−100, for n = 25, 50 and 100, respectively. A
summary of the computational results is displayed in Table 8 in the Appendix.

Problem 8 (Rosenbrock’s function [24])

min f (x) =
n−1∑
i=1

[100(xi+1 − x2
i )

2 + (1 − xi)
2],

s.t. −5 ≤ xi ≤ 5, xi integer, i = 1, 2, . . . , n.

The global minimum solution is x∗
global = [1, . . . , 1]T with f (x∗

global) = 0 for all n. Three
sizes of the problem were considered: n = 25, 50 and 100. For all problems with
different sizes, nine initial points were used in the test experiment: xini = [α, . . . , α]T

for α = 0, ±3, ±5, and xini = [β, . . . , β, β, −β, . . . , −β]T and [β, −β, β, −β, . . . ]T for
β = ±5. For every experiment, the discrete global descent method succeeded in iden-
tifying the global minimum solution. The ratios of the average numbers of function
evaluations to reach the global minima to the numbers of feasible points were about
8.31 × 10−22, 6.21 × 10−47 and 4.27 × 10−98, for n = 25, 50 and 100, respectively. A
summary of the computational results is displayed in Table 9 in the Appendix.

Problem 9 ([23])

min f (x) =
n∑

i=1

x4
i +

(
n∑

i=1

xi

)2

s.t. −5 ≤ xi ≤ 5, xi integer, i = 1, 2, . . . , n.
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The global minimum solution is x∗
global = [0, . . . , 0]T with f (x∗

global) = 0 for all n.
Three sizes of the problem were considered: n = 25, 50 and 100. For all problems with
different sizes, ten initial points were used in the test experiment: xini = [α, . . . , α]T

for α = ±1, ±3, ±5, and xini = [β, . . . , β, β, −β, . . . , −β]T and [β, −β, β, −β, . . . ]T for
β = ±5. For every experiment, the discrete global descent method succeeded in iden-
tifying the global minimum solution. The ratios of the average numbers of function
evaluations to reach the global minima to the numbers of feasible points were about
8.90 × 10−22, 2.00 × 10−47 and 6.60 × 10−99, for n = 25, 50 and 100, respectively. A
summary of the computational results is displayed in Table 10 in the Appendix.

6 Concluding remarks

A discrete global descent method for discrete global optimization and nonlinear
integer programming has been developed in this paper. The sophisticated family of
discrete global descent functions not only guarantees to have a local minimizer over
the problem domain, but also ensures that its local minimizers coincide with the better
local minimizers of f . This property assures that a local minimizer can be found by
using some classical local search methods. Promising computation results have been
observed from our numerical experiments of large scale. These results indicate the
efficiency of the proposed method.
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Appendix

Table 1 Values of f (x) = (x − x̄)T Q(x − x̄) on X

x2 x1
0 1 2 3 4 5 6 7

0 *3 28 139 334 616 982 1434 1971
1 80 *6 18 115 297 565 918 1356
2 271 99 12 *10 93 262 516 856
3 578 306 120 20 *4 75 230 471
4 999 629 344 144 30 *2 58 200
5 1535 1066 682 384 171 43 **1 44
6 2185 1617 1135 738 426 200 59 *3
7 2951 2284 1703 1207 796 471 231 77

* Discrete local minimum (see Definition 5)

** Discrete global minimum

Table 2 Summary of the computational results for Problem 1

Niter Tfinal Tstop Nfinal Nstop

n = 5 Ntest = 5
Minimum 6 1.71 4.40 2002 5911
Mean 28.20 2.87 5.52 3547.00 7456.00
Median 36.00 2.66 5.37 3523.00 7432.00
Maximum 43 4.43 6.94 5883 9792
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Table 3 Summary of the computational results for Problem 2

Niter Tfinal Tstop Nfinal Nstop

n = 4 Ntest = 9
Minimum 1 0.83 2.14 869 3011
Mean 3.33 1.31 2.63 1625.78 3767.78
Median 4.00 1.18 2.46 1526.00 3668.00
Maximum 6 1.90 3.22 2707 4849

Table 4 Summary of the computational results for Problem 3

Niter Tfinal Tstop Nfinal Nstop

n = 2 Ntest = 7
Minimum 0 0.32 34.43 1007 60687
Mean 32.86 4.11 38.04 8521.43 68196.29
Median 2.00 2.56 36.26 7289.00 66969.00
Maximum 113 12.08 45.81 21925 81593

Table 5 Summary of the Computational Results for Problem 4

Niter Tfinal Tstop Nfinal Nstop

n = 2 Ntest = 7
Minimum 3 0.98 164.64 3671 285475
Mean 5.14 85.40 248.89 163109.43 444887.71
Median 4.00 39.46 203.04 75820.00 357594.00
Maximum 11 182.96 346.41 344828 626602

Table 6 Summary of the Computational Results for Problem 5

Niter Tfinal Tstop Nfinal Nstop

n = 2 Ntest = 9
Minimum 192 8.30 927.36 18867 1429317
Mean 202.67 312.65 1278.54 526903.33 1937345.33
Median 208.00 449.14 1395.78 720576.00 2131014.00
Maximum 208 482.20 1598.90 848445 2258883

Table 7 Summary of the Computational Results for Problem 6

Niter Tfinal Tstop Nfinal Nstop

n = 4 Ntest = 10
Minimum 53 2275.61 3493.56 4273411 6560251
Mean 53.00 2408.32 3651.27 4444392.00 6731232.00
Median 53.00 2434.02 3661.15 4441824.00 6728664.00
Maximum 53 2522.89 3770.81 4610237 6897077
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Table 8 Summary of the computational results for Problem 7

Niter Tfinal Tstop Nfinal Nstop

n = 25 Ntest = 9
Minimum 0 0.57 137.80 1351 242659
Mean 1.00 0.85 145.71 2488.89 243796.89
Median 1.00 0.81 145.26 2389.00 243697.00
Maximum 2 1.58 156.19 4527 245835

n = 50 Ntest = 9
Minimum 0 1.76 1077.36 5201 1920991
Mean 1.11 2.89 1086.75 9707.33 1925497.33
Median 1.00 2.63 1086.36 9460.00 1925250.00
Maximum 2 5.80 1105.35 18434 1934224

n = 100 Ntest = 9
Minimum 0 5.64 8844.48 20401 15298884
Mean 1.11 10.83 8864.24 37741.56 15316224.56
Median 1.00 9.60 8866.64 36435.00 15314918.00
Maximum 2 23.74 8916.17 74359 15352842

Table 9 Summary of the computational results for Problem 8

Niter Tfinal Tstop Nfinal Nstop

n = 25 Ntest = 9
Minimum 0 0.49 121.92 1351 218686
Mean 1.00 51.78 176.49 90056.67 305712.11
Median 1.00 0.78 129.83 2470.00 219805.00
Maximum 2 117.18 241.23 206033 419589

n = 50 Ntest = 9
Minimum 0 1.54 930.14 5201 1707273
Mean 1.00 403.13 1343.91 728415.00 2423846.56
Median 1.00 2.69 956.33 9219.00 1711291.00
Maximum 2 917.55 1857.34 1641022 3328153

n = 100 Ntest = 9
Minimum 0 5.08 7539.03 20401 13506266
Mean 1.00 3285.58 10845.75 5879746.89 19333796.78
Median 1.00 9.90 7626.02 35944.00 13521809.00
Maximum 2 7473.98 15055.71 13233642 26647923
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Table 10 Summary of the Computational Results for Problem 9

Niter Tfinal Tstop Nfinal Nstop

n = 25 Ntest = 10
Minimum 11 4.85 137.17 10142 255392
Mean 11.60 50.59 183.76 96382.20 341632.20
Median 12.00 43.42 176.85 81236.50 326486.50
Maximum 12 104.56 236.58 202344 447594

n = 50 Ntest = 10
Minimum 24 17.34 1059.14 40954 1990854
Mean 24.40 117.65 1164.25 234692.30 2184592.30
Median 24.00 20.41 1068.01 50453.50 2000353.50
Maximum 25 437.92 1480.64 843791 2793691

n = 100 Ntest = 10
Minimum 48 68.86 8616.65 161816 15711616
Mean 49.20 463.98 9029.10 909959.70 16459759.70
Median 49.00 75.06 8655.06 183134.00 15732934.00
Maximum 50 1860.80 10465.85 3482697 19032497

Fig. 1 Illustrations of V1
µ(y), V2

µ(y), A1
µ(y) = y · V1

µ(y) and A2
µ(y) = y · V2

µ(y) in Example 3 with
c = µ = 0.5 and τ = 1
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Fig. 2 Illustration of the discrete global descent function for Example 4
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